Economic Damage from Water Resource Contamination

Charles D. Kolstad, Ph.D. — University of California, Santa Barbara

We can protect the quality of our nation’s water resources in two basic ways – through prescriptive regulations and liability laws. The first method, prescriptive regulation, limits emissions of pollutants and governs the technologies of production and pollution control. For example, The Clean Water Act has regulated discharges of organic materials and other non-persistent substances in this way for many years.

However, as Love Canal, Times Beach, Exxon Valdez, and the less publicized Superfund sites have illustrated, a legacy of discharged hazardous substances from pre-regulation polluters still remains to be cleaned. In addition, existing regulations often do not cover accidents, which will definitely continue to occur.

To help prevent accidents, firms that engage in risky activities must receive a strong message to take all appropriate precautions. Liability, a long-standing approach to regulating risky behavior, sends that message by holding agents financially responsible for damage when accidents do occur. As it applies to environmentally risky activity, such as the storage and transportation of hazardous material, liability assigns responsibility to the individual who has perpetrated the accident. When environmental damage does occur, the government assumes the role of trustee for the environmental resources and acts as the injured party.

The basic problem facing a trustee is to determine the damage to the environment. Water resources such as groundwater, rivers, lakes, and coastal areas can be accidentally or intentionally damaged by many pollutants, through storage tank leaks, pipeline leaks, and surface discharge of wastes. For example, the Guadalupe Dunes in California were damaged when pipelines in an oilfield leaked diluents over many years, causing surface water and groundwater contamination. But how does one determine the monetary value of that damage?

Damage Assessments

It is important to recognize that the overall cost of environmental damage does not simply equal the cost of cleaning up the contamination and returning the resource to its original state. If you are injured in an auto accident and take one year to heal, the totality of your damage includes both the cost of restoring your health and the value of a temporary loss in quality of life. Similarly, if a beach is out of commission for a year during an oil spill clean up, then damage includes the temporary loss of services from that beach.

To an economist, a natural resource is considered damaged when individuals or firms would be willing to pay to avoid the change, for whatever reason. The damage claim could be based on use value, a temporary or permanent loss in access to the resource. When a beach is closed for a year, for example, it is not available for sunbathing, swimming or similar use. A more subtle type of damage is called non-use value, principally existence value. For instance, consider a hazardous waste spill that harms an endangered species of fish. Few if any people actually use the endangered fish or even encounter it in their life, yet many people are willing to pay to protect an endangered species. Consequently, when an endangered species is harmed, damages may occur, regardless of how much contact people have with the species.

When water resources are damaged, how is the damage assessed? It may be couched in monetary terms (dollars) or in terms of replacement services, such as a project that will supply similar environmental services as those that were lost. In the latter case, the substitute project may provide physically similar services or broadly-defined equivalent services. In the case of groundwater contamination, a project may provide additional water resources (surface or subsurface) by replacing inefficient agricultural irrigation equipment with more efficient equipment, freeing up water that would otherwise have been consumed. Or a project may be proposed that enhances the survivability of an endangered frog. The economic benefit of enhancing the survivability of the frog may be determined to be the same as the economic loss from the damaged water resources. In this case, the project is provided as compensation for the damaged water resources.

Resource Valuation

In most of these cases, it is important to quantify the broadly-defined economic value of the damaged water resources or the alternative project offered as compensation. Economists typically take one of the following two approaches. One is to conduct a detailed analysis of the project in question, measuring the resource value as determined by affected individuals and firms. Another, less costly, approach is termed benefits transfer. This method relies on detailed resource valuation studies that have been completed elsewhere on similar natural resources. Using these estimates, one can infer the appropriate valuation for the damaged resource under consideration.

When conducting analyses for a specific case of natural resource damage, economists use either the revealed
preference method or contingent valuation. The revealed preference method relies on observations of changes in individual behavior in actual market settings, while contingent valuation relies on direct questioning of individuals. In either case, it is important to realize that the analysis is valuing a change, not determining an absolute value. In other words, it would be inappropriate to try to come up with the value of a section of the Colorado River. What would be appropriate would be to value a specific change in water quality for the Colorado River.

Methods that rely on revealed preference are usually preferred for generating estimates of damage. For instance, in determining the demand for access to a beach for recreation, one can observe how much money people spend to travel to the beach and from this infer how beach visitation costs effect the beach visitation rate.

Contingent valuation involves the careful construction of questionnaires, which posit a scenario of environmental change. Respondents are asked their willingness to pay in order to avoid the environmental change. Although this method can apply to virtually any type of environmental damage, it suffers from the hypothetical nature of the questionnaire. Some consider this a serious flaw; others consider it only a minor problem.

Revealed preference methods require the existence of a market that is coupled with the environmental asset, a market that does not always exist. Contingent valuation has no such restriction and can be apply in nearly all situations.

Changing Nature of Environmental Litigation

There is a great deal of activity and research in the field of quantifying natural resource damage. With these methods, economists have been able to make profound progress in placing substantial economic value on non-marketed environmental resources. This progress has, in turn, shaped the legal debate over environmental protection and, as illustrated by prominent cases such as the Exxon Valdez, changed the nature of environmental litigation.

For additional information see page 31.
important to note that the data demonstrating the existence and scope of such an injury usually already exist, developed during the course of the remedial investigation at the site.

New Mexico has now settled two such groundwater claims, for $210,000 and for $1 million respectively, at volatile organic compound (VOC) sites in Albuquerque. Using outside counsel retained on a contingent fee arrangement, New Mexico is also nearing trial on its demand for more than $4 billion for alleged loss of drinking water resources due to VOC and hydrocarbon contamination at the Albuquerque South Valley Site. With thousands of groundwater sites around the country, even limited success in that litigation could prompt a whole new era of state NRD litigation.

Litigate or Cooperate?
In most environmental litigation – certainly in most cases involving EPA – how to resolve a claim is not a serious question. With few defenses to liability, and even less ability to challenge costs, potentially responsible parties regularly bite the bullet and cooperate to minimize both remediation and transaction costs. In NRD cases, the situation is somewhat different. Trustees are typically not involved in the site from the outset, so there is often a good argument for a statute of limitations defense to the residual NRD claim. There may have been a separate settlement for removal costs at a spill, which, if the settlement does not also preserve the right to later assert a NRD claim, could raise a res judicata issue. Moreover, the NRD provisions, unlike the CERCLA response cost provisions, require a demonstration of causation. A potentially responsible party may have spilled, but did the contaminant reach groundwater at all, let alone at a level sufficient to cause injury? They may have put TCE into the contaminated groundwater plume, but if the injury is based on a MCL exceedance for benzene, which comes from another source, are they liable for that NRD claim?

In many cases, there really is no question of causation (for example, there is a single contaminant or a single source) thus the more interesting questions relate to valuing the injury. Given that the groundwater is contaminated, what is that really worth? If the groundwater is in a shallow aquifer not used for drinking water, what is the value of loss? If the groundwater will be remediated to MCLs without ever impairing anyone’s water rights, what is the value of the loss? However, the availability of potential legal and factual defenses is a double-edged sword, as it magnifies litigation-related transaction costs, and because the trustees cannot recover attorneys fees, both sides need to be wary of entering that fray. That wariness leads some to consider whether, even when the contamination plume is effectively lost forever due to the nature of the contamination, there might be a less expensive approach – perhaps wellhead treatment or water conservation – that can more effectively provide real public benefit to the supply of potable water than endless treatment or payment of some artificially constructed “lost use” value?

Given the risks and costs in most NRD cases, whatever the affected resource, the parties have been quietly working out cooperative settlements, coordinating remediation with restoration to minimize any damage claim, and identifying reasonable approaches to address any residual injury. However, the massive demands being asserted in New Mexico suggest that the cooperative approach may not continue. Natural resource damage claims still present a large number of unresolved and critical litigation issues, which present a fertile field for challenges to trustee decision-making and science. It can be expected that the field will be thoroughly plowed, should responsible parties determine that cooperation with trustees is not returning benefits in terms of the reasonable resolution of damage claims. So, Trustees and PRPs, ask yourself, are you prepared to litigate or should you cooperate?

Jerry George is a partner in the law firm of Campbell, George & Strong, LLP, with offices in Oakland, Houston and Washington, DC. He was formerly with the U.S. Department of Justice.

References
3 Department of Interior Natural Resource Damage

SOURCES FOR ADDITIONAL NIER INFORMATION

The use of water equivalency analysis:
• Burrill, Anne; 1997, Assessing the Societal Value of Water in It Uses; Institute for Prospective Technological Studies, Joint Research Centre of the European Commission; World Trade Center, Seville, Spain.

Web Sites for Department of Interior Regulations and NRD assessments in general:
• DOI Natural Resource Damage Assessment and Restoration Program: restoration.doi.gov
• CERCLA Natural Resource Damage Assessment Regulations: www.doi.gov/oepc/frlist.html
• NRD-related statutory information: www.epa.gov/superfund/programs/nrd/statute.htm

Economics aspects: