CAWCD Director Campbell Honored Prior to Death

The Central Arizona Water Conservation District Board of Directors recently created a special “Golden Chopper Award” for outstanding efforts to further the public image and understanding of the Central Arizona Project (CAP) and made Director George Campbell the first recipient just before his death.

Campbell, who died about two weeks after receiving the Golden Chopper Award, was in the middle of his second six-year term as a member of the CAWCD Board of Directors. Arizona Gov. Janet Napolitano will name a replacement to complete Campbell’s term, which expires in 2006.

Campbell used his extensive connections to help elected and government officials and members of the public understand the importance of CAP to Arizona by inviting them on VIP helicopter flights to view the system. Over the years, Campbell was responsible for arranging the “chopper” tours of CAP by members of Congress and their staffs, members of the Arizona Legislature, county and city officials, civic and business leaders, and journalists.

The Golden Chopper Award is a gold-colored model helicopter on a plaque that lists names of its recipients. It will remain at CAP headquarters in north Phoenix. Visit www.cap-az.com.

DRI Award Winner Studies Southwest Monsoon

From the DRI News, Summer 2003

A Desert Research Institute (DRI) graduate research assistant who has shown that a single degree rise in sea surface temperatures in the Gulf of California can stimulate summer monsoons in the desert Southwest has received DRI’s 2003 Colin Warden Award. Dorothea Ivanova, a Ph.D. candidate in atmospheric sciences at the University of Nevada, Reno, applied an advanced forecasting model to connect an increase in the gulf’s summer sea surface temperatures from 29 to 30 degrees Celsius with the development of major regional thunderstorms that periodically cause flash floods in southern Nevada.

Ivanova has been working under the guidance of Dr. David Mitchell, a DRI atmospheric physicist who has been studying the sea surface temperature–monsoon connection in collaboration with Mexican scientists. The American monsoon is responsible for significant summer precipitation in Arizona and New Mexico, and can also significantly influence weather throughout the intermountain West and into the Great Plains. Massive, widespread range fires across much of the central and eastern Great Basin several years ago were triggered by monsoonal lightning storms.

The $1,000 award is named for Colin Warden, a Washoe Medical Center electrician and an ardent environmentalist who died in 1991. The award recognizes environmental research by graduate students at DRI.

Visit www.dri.edu.

Kathy Jacobs Leaves ADWR for University of Arizona

Kathy Jacobs has recently accepted a faculty position at the University of Arizona. She will be affiliated with the Water Resources Research Center (WRRC), the Institute for the Study of the Planet Earth, and SAHRA, the Center for Sustainability of semi-Arid Hydrology and Riparian Areas. Jacobs was with the Arizona Department of Water Resources (ADWR) since 1981 and served as director of the Tucson Active Management Area from 1988 to 2001. At ADWR she was involved in multiple major projects, including development of all three management plans and the Assured Water Supply Rules. Recently, she has been coordinating the activities of the Governor’s Drought Task Force, developing the state’s first drought plan, and researching rural water supply and growth issues.

In her position within the College of Agriculture and Life Sciences, Jacobs will continue to assist in the development of Arizona’s Drought Task Force Plan, help develop a coordinated water education and outreach program at the University of Arizona with SAHRA, WRRC, the Engineering Research Center for Environmentally Benign Semiconductor Manufacture, and the Water Quality Center; and assist the National Oceanic and Atmospheric Administration with special projects related to climate and water management and the use of scientific information in decision-making.

Longoria to Become President of Water Environment Association of Texas

The Texas consulting firm of Freese and Nichols Inc. recently announced that Raymond Longoria, P.E., D.E.E., has been elected to the position of president-elect of the Water Environment Association of Texas (WEAT) for the 2003-2004 fiscal year. Longoria, a principal of Freese and Nichols, has served as a design engineer, project engineer, and project manager for wastewater treatment facilities and wastewater collection/conveyance systems in his 21 years with the firm. Currently a project manager and Water/Wastewater Technical Discipline Leader, his responsibilities have included the supervision of planning, design, and construction administration for municipal projects and the preparation of studies,
Endocrine Disrupters, continued from page 15

way of sewage effluents. Several reports indicate that aquatic organisms residing directly downstream from some effluent discharges are impacted by EDCs. However, these impacts usually are changes in biomarkers that have not been correlated to population-level effects. An example is induction of vitellogenin, a fish egg yolk precursor, in the blood of male fish exposed to exogenous estrogenic chemicals. Vitellogenin has no known function in male fish and its presence in their blood is considered evidence of endocrine disruption. However, vitellogenin induction is not known to affect reproductive performance in male fish (that is, it might not represent a clearly adverse effect).

It is important to determine if changes in biomarkers in organisms exposed to EDCs and PPCPs translate into adverse effects within the population. Furthermore, methodology for EDC testing has not been validated or standardized. For instance, a round-robin study on vitellogenin analysis commissioned by the EPA demonstrated that variability was unacceptably high, up to 173 percent. Very few reports have shown EDC/PPCP occurrences in drinking water. However, until the EPA testing program is in place, predicting which compounds actually have endocrine activity and therefore should be target analytes is difficult. For many compounds, analytical methods are not available to measure trace concentrations in water. When methods are available, few laboratories may have the capability to conduct the analyses. But advances in analytical technology will certainly lead to the discovery of more contaminants at lower and lower levels. Determining the toxicological relevance, if any, of these trace contaminants is critical to establishing reasonable treatment goals.

Contact Shane Snyder at shane.snyder@snwa.com.

dividual endocrine systems. Several reports indicate that aquatic organisms residing directly downstream from some effluent discharges are impacted by EDCs. However, these impacts usually are changes in biomarkers that have not been correlated to population-level effects. An example is induction of vitellogenin, a fish egg yolk precursor, in the blood of male fish exposed to exogenous estrogenic chemicals. Vitellogenin has no known function in male fish and its presence in their blood is considered evidence of endocrine disruption. However, vitellogenin induction is not known to affect reproductive performance in male fish (that is, it might not represent a clearly adverse effect).

It is important to determine if changes in biomarkers in organisms exposed to EDCs and PPCPs translate into adverse effects within the population. Furthermore, methodology for EDC testing has not been validated or standardized. For instance, a round-robin study on vitellogenin analysis commissioned by the EPA demonstrated that variability was unacceptably high, up to 173 percent. Very few reports have shown EDC/PPCP occurrences in drinking water. However, until the EPA testing program is in place, predicting which compounds actually have endocrine activity and therefore should be target analytes is difficult. For many compounds, analytical methods are not available to measure trace concentrations in water. When methods are available, few laboratories may have the capability to conduct the analyses. But advances in analytical technology will certainly lead to the discovery of more contaminants at lower and lower levels. Determining the toxicological relevance, if any, of these trace contaminants is critical to establishing reasonable treatment goals.

Contact Shane Snyder at shane.snyder@snwa.com.

dividual endocrine systems. Several reports indicate that aquatic organisms residing directly downstream from some effluent discharges are impacted by EDCs. However, these impacts usually are changes in biomarkers that have not been correlated to population-level effects. An example is induction of vitellogenin, a fish egg yolk precursor, in the blood of male fish exposed to exogenous estrogenic chemicals. Vitellogenin has no known function in male fish and its presence in their blood is considered evidence of endocrine disruption. However, vitellogenin induction is not known to affect reproductive performance in male fish (that is, it might not represent a clearly adverse effect).

It is important to determine if changes in biomarkers in organisms exposed to EDCs and PPCPs translate into adverse effects within the population. Furthermore, methodology for EDC testing has not been validated or standardized. For instance, a round-robin study on vitellogenin analysis commissioned by the EPA demonstrated that variability was unacceptably high, up to 173 percent. Very few reports have shown EDC/PPCP occurrences in drinking water. However, until the EPA testing program is in place, predicting which compounds actually have endocrine activity and therefore should be target analytes is difficult. For many compounds, analytical methods are not available to measure trace concentrations in water. When methods are available, few laboratories may have the capability to conduct the analyses. But advances in analytical technology will certainly lead to the discovery of more contaminants at lower and lower levels. Determining the toxicological relevance, if any, of these trace contaminants is critical to establishing reasonable treatment goals.

Contact Shane Snyder at shane.snyder@snwa.com.