The value of our service equals the sum of our staff.

We are scientists, problem solvers, implementers. People who love what we do. Clear Creek Associates are a group of people whose collective expertise in groundwater-related projects in Arizona is unmatched. We’re dedicated to offering quality-focused, very responsive hydrologic services to clients throughout the Southwest.

We’ve built our reputation on a foundation of strong professional capabilities, finely honed project coordination and communication skills, and extensive statewide experience.

With each addition to our staff over the past six years, the value of our service has grown. You can find out more about our newest staff members, and other matters of interest, at our Web site, www.clearcreekassociates.com.

Offering comprehensive, hydrogeologic services in five integrated areas:

Groundwater Development — extensive knowledge of and experience with well drilling technology, borehole evaluation and well design, plus an Arizona well driller’s license

Groundwater Modeling — technical abilities combined with interpretive skill acquired through five decades of collective team experience in creating and interpreting models

Hydrogeologic Investigations — focused application of hydrogeological analyses to resolve groundwater issues, address regulatory concerns and water rights issues, or support water resources planning

Environmental Services — resolving problems in a cost effective and timely manner by integrating scientific, technical, analytical and legal capabilities, with proven relationships with regulators

Mining Support — clarifying communications, streamlining permitting, and helping companies develop positive relationships with environmental agencies
The New Levelogger Gold represents the next generation of Solinst Levelogger®. Vastly improved over previous versions, the Levelogger Gold is completely designed, developed and manufactured in-house, in the tradition of all Solinst high quality products. Offering higher resolution and high accuracy of 0.05% for a much reduced price, the Levelogger Gold has improved transducer, temperature, and clock accuracies. Altitude, water density, temperature and barometric compensations also add to the major jump in accuracy.

New user-selectable recording schedule, as well as the standard event-based and linear sampling, is just one of the added features of the most friendly software yet. Battery life is 10-Years, even with recordings every minute. Memory is 40,000 readings of pressure and temperature, displayed as temperature compensated level, with an on-board backup of the last 1200 logs. The stainless steel housing protects against lightning and power surges and the golden Zirconium Nitride coating gives extra corrosion resistance.
Happy New Year! This issue begins Volume 5 of Southwest Hydrology. The survival rate for magazines beyond the first year or two is discouragingly low, so we are grateful for the enthusiastic response and support we have received from our audience and advertisers – and the National Science Foundation – that has enabled us to reach our fifth year of publication with still-expanding readership.

We’re starting the year with a feature on constructed wetlands, which are capable of removing a variety of contaminants from water, in many cases while simultaneously offering ecosystem, educational, and recreational benefits. Our feature articles discuss the use of constructed wetlands to treat municipal, industrial, agricultural, and landfill runoff, as well as acid mine drainage. And we didn’t forget about mosquitoes: they like wetlands too, but there are ways to manage their numbers.

Upcoming issues will feature aging water infrastructure (March/April 2006); basic data, including its collection, collectors, distribution, funding, integration, and quality control (May/June 2006); and decision-support systems (July/August 2006). We welcome ideas and suggestions regarding coverage of these topics.

Our thanks to all the contributors to this issue, as well as to all our advertisers. We look forward to your feedback and ideas.

Betty Woodhouse
Publisher
Water Resources Modeling Software

Groundwater Modeling System (GMS)
- GIS based modeling with 15 different groundwater models
- Particle-tracking, reactive, and multi-phase transport capability
- Integrated geostatistical and subsurface characterization tools
- True 3D visualization and animation
- Automated calibration and parameter estimation

Surface-Water Modeling System (SMS)
- GIS-based modeling of hydraulics and transport in surface water
- River dynamics, pollutant and sediment transport capability
- Coastal circulation and wave action analysis
- 3D visualization and animation of models and computational results

Watershed Modeling System (WMS)
- GIS-based modeling interface for complete H&H analysis
- Automated delineation of watersheds and floodplains
- Integrated hydrologic models for runoff prediction
- Custom tools for Maricopa Co. AZ; LA County, CA; Orange Co. CA
- Hydraulic modeling of rivers, pipe networks and dambreak flooding
- Distributed (2D) surface-water / groundwater modeling

Professional Training Courses for GMS, SMS & WMS are held every 6 months! Update your modeling skills and earn CEU's.

Environmental Modeling Systems, Inc. www.ems-i.com (801) 302 1400
On the Ground
- Land fissures in Arizona
- Database on river restoration projects

Government
- CO Basin states sign agreement
- New EPA publications
- AZ war chest for CO River rights
- Development linked to conservation
- Border security trumps wetlands
- Flood control shake-up in CA
- NM water grants to colonias
- New septic tanks banned in NM

HydroFacts

Company Line
- CH2M Hill gets WWTP contract
- Tetra Tech to support EPA water efforts
- Pirnie to develop treatment database
- CAS buys Transwest Geochem
- CH2M Hill opens Tucson office

People
Harshbarger honored at UA

R & D
- Test of flash flood warning system
- Tree-rings show drought widespread
- NRC studies long-term CO River flow
- Cutting CA water waste 20 percent
- PPCP health risks overblown?

Business Directory and Employment Opportunities

Around the Globe
Afghanistan’s water future

Society Page
- 50th NMWRRI Conference
- 25th Biennial GW Conference in CA

Education
San Antonio’s World of Water exhibit

In Print
Natural Wastewater Treatment Systems, reviewed by Joan Gable

Software Review
OTIS and OTIS-P, reviewed by Michael Goosseff

The Calendar

Inside This Issue

Departments

13 HydroFacts

15 Company Line
- CH2M Hill gets WWTP contract
- Tetra Tech to support EPA water efforts
- Pirnie to develop treatment database
- CAS buys Transwest Geochem
- CH2M Hill opens Tucson office

18 Passive Treatment of Acid Rock Drainage
James J. Gusek
Acid rock drainage from mines is a costly and enduring problem. Passive treatment of ARD through aerobic cells and sulfate-reducing bioreactors is proving effective in immobilizing metals in substrate materials on a long-term basis.

22 The Apache Nitrogen Wetland: Groundwater Denitrification Using Constructed Wetlands
Eric M. Roudebush and Pamela J. Beilke
A nitrate-contaminated Superfund site in southern Arizona has been transformed into a 4.3-acre wildlife oasis after many challenges were overcome and the right chemical balance was found.

26 Subsurface-Flow Constructed Wetlands for Water Treatment
Stephen Lyon
Subsurface-flow constructed wetlands remove water contaminants, require little maintenance, and minimize problems of mosquito and odor control. Demonstration projects for treating dairy wastewater and high-flow surface water have shown the concept to be sound and effective.

Constructed Wetlands

The concept of using constructed wetlands for water treatment arose from observations of natural wetlands’ ability to remove contaminants from the watershed. In both systems, biological, physical, and chemical processes that reduce contaminants occur—including settling, microbial oxidation, anaerobic decomposition, denitrification, adsorption, and precipitation. This issue’s feature articles describe a broad range of contaminants being treated by constructed wetlands, the suitability of different types of wetlands for different situations, and, importantly for both public relations and public health, how to keep the mosquitoes at bay.

16 Constructed Wetlands for Natural Wastewater Treatment
Robert A. Gearheart
How do constructed wetlands effectively mimic natural wetlands and what benefits do they offer? What treatment designs are available? Passive treatment systems can be used to treat wastewater from a variety of sources.

20 Approaches to Mosquito Management in the Southwest
Elizabeth Willott
Surface-flow wetlands are ideal breeding grounds for mosquitoes. However, drainage monitoring, vegetation management, use of bacterial larvicides, introduction of fish, and continued vigilance can keep the problem under control.

24 Leachate Treatment
Ronald W. Crites and Bryan Plude
Several types of wetlands can be used to treat landfill leachate, although vertical-flow wetlands are especially successful. Factors to consider in wetland design are leachate characteristics, land area requirements, topography, and climate.

29 Small Community Wetland Offers Large Benefits
Joan Gable and Marilyn Ethelbah
EPA Clean Water Act funds helped create a half-acre wetland to treat water impacted from agricultural and storm waters in a central Arizona Indian community. Not only has water quality improved, but salt cedar has been eradicated.

22 The Apache Nitrogen Wetland: Groundwater Denitrification Using Constructed Wetlands
Eric M. Roudebush and Pamela J. Beilke
A nitrate-contaminated Superfund site in southern Arizona has been transformed into a 4.3-acre wildlife oasis after many challenges were overcome and the right chemical balance was found.